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Introduction

There is currently no rigorous theory of the effectiveness of deep and

machine learning [1]

Inference by machine learning algorithms is a particular variational

problem on the dynamics of a data-generating process [2]

A higher gauge theory describing the dynamics of string-like objects

has been developed by Baez and Schreiber to generalise Yang-Mills

theory [3]

On this basis, we develop a formal, geometric theory of inference as

computing the solution to an arbitrary dynamical system

This provides an explanation of the effectiveness of deep learning, by

showing it computes solution sets of arbitrary dynamical systems as data-

generating processes.

Preliminaries

A field theory is a field of entities (scalars, vectors, tensors) X over a

space-time Σ.

Consider the U(1) gauge group in electromagnetism. A gauge theory

describes a field theory for which the Lagrangian L(φ) of field
configurations is invariant under differing choices of some set of

group elements g(x) ∈ G.

A principal bundle is the geometric framework in which a field

theory and a gauge theory are ‘packaged’ together, as a fibration

X → Σ with invariance P ×G F → Σ.

An associated bundle provides a matter field given by a

representation of G, such as an electric field transforming under

ρ : U(1) → GL(1,C).

A connection one-form is, loosely, a map ω to the Lie algebra g of G.

The integration of a differential form along a particle’s path is a term

in the action of the particle (cf. Chern-Simons theory). In a U(1)
gauge theory, g is the electromagnetic four-potential.

A section γ is a path that maps inputs to outputs such that

γ : Σ → X .

The parallel transportation of a point-like object ε, tra(ε), is the
translation along a path in the fibres in a manner that follows the

connection.

A dynamical system or data-generating process is a function that

produces states for inputs, so that a dynamical system creates a path

in the configuration space X .

Higher Gauge Theory in Bundle Gerbes

Let X be a field and ε be a particle in the field, such that X is the

configuration space of ε. Clearly, tra(ε) describes the solution to a

dynamical system, such that for

ẋ = f (x), (1)

parallel transportation of an ε gives us a trajectory

γ = {x(σ0), . . . , x(σf)}
satisfying everywhere tangency to (1) for x ∈ X and σ ∈ Σ. Each
trajectory has Lie group elements g attached to it, so that in parallel

transportation on a principal bundle, interaction with a gauge field is

measured. Each path obeys least action, such that the path follows the

Lie algebra-valued connection one-form on which it is defined.

Inference is a variational problem over an ensemble of paths, so that

one considers not the optimal single trajectory, but a probability

density p(γ) as the optimal assignment of probabilities to multiple

trajectories (given a constraint J ). Can we define parallel

transportation in the space of paths, γ ∈ Γ?

Following Baez and Schreiber, we generalise parallel transportation of

particles on paths, to parallel transportation of paths, by taking the

fibration of the path space
∏

Σ(X) 7→ Γ and giving another gauge group

H to the total space Γ.

Parallel transportation of paths on a parameterised surface (a moduli

space of paths), such that we trace out a worldsheet, now follows the

connection between path-wise connections, h, as well as the
path-wise connection g. This higher order interaction between gauge

fields, with the higher dimensional structure of path transport, is

encapsulated in a two-bundle and related structures.

The parallel transportation of paths is given by the parallel

transportation on a two-bundle with connection,

tra(γ) = exp
{

−
∫

Σ
κ(γ, ω)

}
,

for κ a shift operation [4] between two pullback-connections γ∗
0 ω0 and

γ∗
1 ω1, creating a worldsheet of lifts along h. Like one-transport, this

satisfies an ODE for horizontal lifts.

AMathematical View of Inference

We consider maximum entropy as a general view of inference, and energy-

based learning as its instantiation in ML. Maximum entropy is a general

theory of inference given by Jaynes in [5], with a related generalisation to

path spaces called maximum calibre [6]. Relatedly, it has been suggested

that all types of machine learning are nothing but various limiting cases of

energy-based learning [2], which is itself a maximum entropy model. We

will now show that

1. Maximum calibre is the parallel transportation over paths

2. This corresponds to the optimal assignment of probabilities over paths

3. This is formally the solution to an equation describing the dynamics of

a noisy data-generating process.

Proof of 1. Take maximum calibre as a variational principle over paths, such

that we have the maximised action functional

p(γ) = arg max
p(γ)

[
−

∫
Γ

ln{p(γ)}p(γ) + J(γ)p(γ) dγ − C
]

(2)

for E[J ] = C . When maximised with respect to p(γ), we have

p(γ) = exp{−J(γ)}. (3)

Let changing a value of J ′ be a functorial shift operation. Then, for J an

abelian group forming a product space with X , the parallel transportation

of paths is

tra(γ) = exp
{

−
∫

Σ
γ∗j′

}
= exp{−j(γ)}. (4)

For a set of values J = j, each given by
∫
Σ ◦ κ, we recover (3).

Proof of 2. By definition, finding (3) from (2) is a variational problem. Un-

der the parallel transportation with respect to the connection J ′ on paths,

we have for (2) a geodesic on the h-valued connection, yielding (4) when

optimised. Thus, maximum calibre yields a least action p(γ).

Proof of 3. Let an SDE be a dynamical system driven by a Wiener process.

Any solution to the SDE is described by the probability amplitude as a solu-

tion to the SDE’s Fokker-Planck equation. Since p(γ) is given variationally

by (4), parallel transport gives the amplitude of

p(x(σi+1) | x(σi), . . . , x(σ0))
for any x in the image of γ. Since (4) computes the integration of path-wise

differential forms, it is formally equivalent to solving for this density.
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